SPECIFICATION OF ELECTRET CONDENSER MICROPHONE

(TO:)

MODEL NO. : ASMO-C110T42-3P H/F
DIRECTIVITY : OMNI-DIRECTIONAL

<table>
<thead>
<tr>
<th>USER</th>
<th>Prepared</th>
<th>Checked</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sign.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BSE</th>
<th>Prepared</th>
<th>Checked</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>HJ Kim</td>
<td>SH Lee</td>
<td>CW Kim</td>
</tr>
<tr>
<td>Sign.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BSE CO., LTD
626-3 58B-4L, Gozan-dong, Namdong-Ku
INCHEON-City. KOREA
TEL: (8232) 500-1965
FAX: (8232) 500-1898

※ All Parts are Halogen Free Material.

Microphone Technology Leadership
SPECIFICATION HISTORY

<table>
<thead>
<tr>
<th>History Change</th>
<th>Date</th>
<th>Item</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSUE From BSE To</td>
<td>2015.</td>
<td>ASMO-C110T42-3P</td>
<td>1st Submission of Microphone spec.</td>
</tr>
</tbody>
</table>
CONTENTS

1. SCOPE
2. MODEL NO.
3. ELECTRICAL CHARACTERISTICS
 3.1 Sensitivity
 3.2 Current Consumption
 3.3 Signal to Noise Ratio
 3.4 Decreasing Voltage
 3.5 Operating Voltage
 3.6 Maximum input S.P.L.
4. MEASUREMENT CIRCUIT
5. TYPICAL FREQUENCY RESPONSE CURVE (FAR FIELD)
6. MECHANICAL CHARACTERISTICS
 6.1 Dimension
 6.2 Structure
7. RELIABILITY TEST
 7.1 High Temperature Test
 7.2 Low Temperature Test
 7.3 Temperature & Humidity Test
 7.4 Temperature Shock
 7.5 Drop Test
 7.6 Vibration Test
8. TEMPERATURE CONDITIONS
 8.1 Storage Temperature
 8.2 Operating Temperature
9. MEASUREMENT SYSTEM
10. REFLOW PROFILE (Guaranteed Maximum Reflow Condition)
11. RECOMMENDED STENCIL PATTERN
12. CAUTIONS WITH USING SMD MICROPHONE
13. PACKAGE
14. Recommended Pick-up nozzle
1. INTRODUCTION
This specification is for the SMD possible Electret Condenser Microphone (ECM) which has endurable reflow temperature of up to 250℃ for under 30 seconds.

2. MODEL NO.
ASMO-C110T42-3P H/F

3. ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>NO.</th>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sensitivity</td>
<td>S</td>
<td>f=1kHz, S.P.L =1Pa, 0dB=1V/Pa</td>
<td>-45 -42 -39</td>
<td>dB</td>
</tr>
<tr>
<td>2</td>
<td>Current Consumption</td>
<td>I_DSS</td>
<td>V_CC=2.0V</td>
<td>- 70 110</td>
<td>µA</td>
</tr>
<tr>
<td>3</td>
<td>Signal to Noise Ratio</td>
<td>S/N</td>
<td>f=1kHz, S.P.L =1Pa (A-Weighted Curve)</td>
<td>58 62 -</td>
<td>dB</td>
</tr>
<tr>
<td>4</td>
<td>Decreasing Voltage</td>
<td>ΔS-VS</td>
<td>V_CC=2.0V to 1.5V</td>
<td>- - -3</td>
<td>dB</td>
</tr>
<tr>
<td>5</td>
<td>Operating Voltage</td>
<td></td>
<td></td>
<td>1.6 2.0 3.6</td>
<td>V</td>
</tr>
<tr>
<td>6</td>
<td>Total Harmonic Distortion</td>
<td>THD</td>
<td></td>
<td>- - 1</td>
<td>%</td>
</tr>
<tr>
<td>7</td>
<td>Acoustic Overload Point</td>
<td>AOP</td>
<td>THD>10% at 1kHz</td>
<td>130 - -</td>
<td>dB SPL</td>
</tr>
</tbody>
</table>

Temp. = 23 ± 2 ℃ \nRoom Humidity = 65 ± 5 %

4. MEASUREMENT CIRCUIT

![Measurement Circuit Diagram]

Microphone Technology Leadership
5. TYPICAL FREQUENCY RESPONSE CURVE (FAR FIELD)

Far Field Measurement Condition
Temperature : 23 ± 2 ℃
Bias Voltage : 2.0V (with 2.2kΩ series resistor)
Acoustic stimulus : 1Pa (94dB SPL at 1kHz) at 50 cm from the loud-speaker.
 The loud-speaker must be calibrated to make a flat frequency response input signal
Position : The frequency response of microphone unit measured at 50cm from the loud-speaker

6. MECHANICAL CHARACTERISTICS

6-1. Dimension
6-2. Structure

7. RELIABILITY TEST

7.1 HIGH TEMPERATURE TEST

After exposure at +85±2°C for 72 hours, sensitivity should be within ±3dB from initial sensitivity.
(The measurement is done after 2 hours of conditioning at room temperature)

7.2 LOW TEMPERATURE TEST

After exposure at -40±2°C for 72 hours, sensitivity should be within ±3dB from initial sensitivity.
(The measurement is done after 2 hours of conditioning at room temperature)

7.3 TEMPERATURE & HUMIDITY TEST

After exposure at 60±2°C and 95% relative humidity for 200 hours, sensitivity to should within ±3dB from initial sensitivity.
(The measurement is done after 2 hours of conditioning at room temperature)
7.4 TEMPERATURE SHOCK

Temperature change from -40±2°C to +85±2°C for 1 hour. After 15 cycles, sensitivity should be within ±3dB from initial sensitivity. (The measurement is done after 2 hours of conditioning at room temperature)

7.5 DROP TEST

After dropped to concrete floor each 6 times from 1 meter height at three directions, sensitivity should be within ±3dB from initial sensitivity.

7.6 VIBRATION TEST

10Hz to 500Hz for 30 minutes & 3.1g at three axes (x, y, z) (Sensitivity should be within ±3dB from initial sensitivity)

8. TEMPERATURE CONDITIONS

8.1 STORAGE TEMPERATURE : -40°C ~ +85°C
8.2 OPERATING TEMPERATURE : -25°C ~ +70°C

9. MEASUREMENT SYSTEM
10. REFLOW PROFILE (Guaranteed Maximum Reflow Condition)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average temp. gradient in preheating</td>
<td>2.5℃/s</td>
<td>Time above 240℃</td>
<td>Max. 10 s</td>
</tr>
<tr>
<td>Soak time</td>
<td>2 ~ 3 minutes</td>
<td>Peak temp.</td>
<td>240℃(-0/+10℃)</td>
</tr>
<tr>
<td>Time above 217℃</td>
<td>Max. 60 s</td>
<td>Temp. gradient in cooling</td>
<td>Max. -5℃/s</td>
</tr>
<tr>
<td>Time above 230℃</td>
<td>Max. 50 s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. RECOMMENDED STENCIL PATTERN

Thickness of metal mask : 0.1T
12. CAUTIONS WITH USING SMD MICROPHONE

12-1 X-ray inspection
- X-ray inspection is possible only under the setting conditions with Voltage: 60~80kV, Current: 60~100μA, Time: within 1 min
- Don’t do the REFLOW or REWORK process after X-ray inspection
- BUT, post-baking (at 105°C for 2hrs) after X-ray inspection is recommended for stabilizing SMD microphone

12-2 Cleaning process
- Don’t do the cleaning process with any kind of volatile solvent (Acetone, TCE, alcohol, etc.), water, or detergent
→ Possible only for the purpose of removing any dust or particle only with tissue or cotton tip without direct contact to the microphone

12-3 Router process on Printed Circuit Board after reflow
- It’s possible to affect the acoustic properties of SMD microphone, when any particle gets into the SMD microphone inside through sound holes
13. PACKAGE
13.1 REEL DIMENSION

- 13" reel will be provided for the mass production stage
13. 2 TAPING SPECIFICATION

[Note]
1. Direction of parts : See above pictures
2. Microphone total quantity(13” Reel) : 5,700pcs
3. ESD : 10²~10 Ω
4. Thermo-compression method

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>4.06±0.10</td>
<td>E</td>
<td>2.5±0.10</td>
</tr>
<tr>
<td>B0</td>
<td>3.30±0.10</td>
<td>F</td>
<td>5.50±0.05</td>
</tr>
<tr>
<td>K0</td>
<td>1.30±0.10</td>
<td>T</td>
<td>0.30±0.05</td>
</tr>
<tr>
<td>D0</td>
<td>1.50±0.10</td>
<td>W</td>
<td>12.00±0.30</td>
</tr>
</tbody>
</table>

Unit : mm
13. 3 INNER & OUTER BOX SPEC

Inner Box spec.

Outer Box Spec.
14. Recommended Pick-up nozzle

14.1 When a nozzle has no locate at the center of MIC.
- Nozzle material: Metal
- Nozzle position: 0.63mm from the center of MIC. (opposite sound port)
- Nozzle inner diameter: Max. Ø1.5

14.2 When a nozzle locate at the center of MIC.
- Nozzle material: Metal
- Nozzle inner diameter: Max. Ø1.0